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We analyze a deterministic cellular automaton s ·=(sn: n \ 0) corresponding to
the zero-temperature case of Domany’s stochastic Ising ferromagnet on the
hexagonal lattice H. The state space SH={−1, +1}H consists of assignments of
−1 or +1 to each site of H and the initial state s0={s0

x}x ¥ H is chosen randomly
with P(s0

x=+1)=p ¥ [0, 1]. The sites of H are partitioned in two sets A and
B so that all the neighbors of a site x in A belong to B and vice versa, and the
discrete time dynamics is such that the s ·

x’s with x ¥ A (respectively, B) are
updated simultaneously at odd (resp., even) times, making s ·

x agree with the
majority of its three neighbors. In ref. 1 it was proved that there is a percolation
transition at p=1/2 in the percolation models defined by sn, for all times
n ¥ [1, .]. In this paper, we study the nature of that transition and prove that
the critical exponents b, n, and g of the dependent percolation models defined
by sn, n ¥ [1, .], have the same values as for standard two-dimensional inde-
pendent site percolation (on the triangular lattice).

KEY WORDS: Dependent percolation; critical exponents; universality; cellular
automaton; zero-temperature dynamics.

1. INTRODUCTION

The deterministic cellular automaton corresponding to the zero-tempera-
ture case of Domany’s stochastic Ising ferromagnet on the hexagonal
lattice H (2) can be considered as a simplified version of a continuous time
Markov process where an independent (rate 1) Poisson clock is assigned to



each site x ¥ H, and the spin sx at site x is updated when the corresponding
clock rings. The rule for updating the spin is to flip it if and only if it
disagrees with two or three (a majority) of its neighbors. This model has
been studied both rigorously and numerically in ref. 3; the numerical
results about two critical exponents obtained there strongly suggest that the
dependent percolation model defined by the limiting spin configuration s.

is in the same universality class as ordinary independent percolation.
In the zero-temperature Domany model studied here, the rule for

updating the spins is unchanged, but the timing is different. This model has
been previously used in numerical simulations, (4) and its dynamical as well
as percolation properties have been studied in refs. 1, 5, and 6. In ref. 1, the
existence of a percolation transition for the dependent percolation models
associated with the spin configurations sn at time n, for all n ¥ [1, .], is
proved; in ref. 5, it is shown that for any n \ 1, the crossing probabilities
converge to Cardy’s formula (7) when the lattice spacing d is sent to zero
(the continuum scaling limit), as in the case of independent percolation (at
least on the triangular lattice T (8)); in ref. 6, the continuum scaling limit is
analyzed in terms of cluster boundaries and is shown to be the same as for
ordinary independent critical percolation on T. This last result strongly
suggests that also the critical exponents defined at the critical point should
be the same as for independent percolation. Indeed, due to the above men-
tioned result, one can use properties of the Stochastic Loewner Evolution (9)

(which describes the scaling limit of ordinary critical percolation cluster
interfaces) to compute certain critical exponents in the continuous model
corresponding to the scaling limit. But unfortunately, the connection
between critical exponents in the continuous and discrete models is not
straightforward; more work and further results on the discrete model
would be required to relate the discrete critical exponents with the contin-
uous ones (see ref. 10).

Similar models on different lattices have been studied in various
papers; see, for example, refs. 11–17 for models on Zd and ref. 18 for a
model on the homogeneous tree of degree three. Such models are also dis-
cussed extensively in the physics literature, usually on Zd (see, for example,
refs. 2 and 19). Their interest is tied to the fact that they can be obtained as
zero-temperature limits of stochastic Ising models, a special class of
Markov processes whose transition probabilities/rates are chosen so that
the Gibbs measures (for some Hamiltonian) at temperature T are invariant
for the Markov process. In systems where there are multiple (infinite-
volume) Gibbs measures for T below some critical Tc, a subject of consid-
erable interest is the t Q . behavior of the spin configuration s t (with
temperature T=T1 < Tc) when the initial state is chosen from the (unique)
Gibbs measure at T=T2 > Tc. Studying the limiting case where T1=0 and
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T2=. is the standard choice in much of the statistical physics literature
(see, e.g., ref. 20).

In this paper, we study the percolation properties of (say) +1 spins in
the dependent percolation models, generated by the zero-temperature
Domany cellular automaton, corresponding to sn, with n ¥ [1, .], when
the initial state is chosen randomly with P(s0

x=+1)=p ¥ [0, 1]. In ref. 1,
it was shown that there is a percolation transition with pc=1/2 for all
values of n ¥ [1, .]. We remark that pc is not 1/2 for n=0, since the cri-
tical probability for independent site percolation on the hexagonal lattice is
strictly larger than 1/2, therefore the system is driven to criticality by the
dynamics, and this after just one time step. This is in contrast to what
happens in the case of the continuous time model studied in ref. 3, where it
is believed that criticality is achieved again for p=1/2, but only at time
t=.. Nonetheless, the nature of the percolation transition, in terms of
critical exponents and/or scaling limits, is presumed to be the same in the
different models.

2. DEFINITION OF THE MODEL AND PRELIMINARY RESULTS

In this section, we give a more detailed description of the model and
present, for completeness, results that were proved in ref. 1 which motivate
(and will be used in) the next section, where the main results of this paper
are presented.

Consider the homogeneous ferromagnet on the hexagonal lattice H
(embedded in R2 so that the elementary cells are regular hexagons with side
length 1—see, for example, Fig. 1) with states denoted by s={sx}x ¥ H,
sx=± 1, and with (formal) Hamiltonian

H(s)=− C
Ox, yP

sxsy, (1)

where ;Ox, yP denotes the sum over all pairs of neighbor sites, each pair
counted once. We write NH(x) for the set of three neighbors of x, and
indicate with

DxH(s)=2 C
y ¥ NH(x)

sxsy (2)

the change in the Hamiltonian when the spin sx at site x is flipped (i.e.,
changes sign).

Partition the sites of the hexagonal lattice H into two subsets, A and
B, in such a way that all three neighbors of a site x in A (resp., B) are in
B (resp., A). By joining two sites of A whenever they are next-nearest
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Fig. 1. A star-triangle transformation relating triangular and hexagonal lattice.

neighbors in the hexagonal lattice (two steps away from each other), we get
a triangular lattice (the same with B—see Fig. 1). The synchronous
dynamics that we consider here is such that all the sites in A (resp., B) are
updated simultaneously.

We now define the cellular automaton sn, n ¥ N, with state space
SH={ − 1, +1}H, which is the zero temperature limit of a model of
Domany, (2) as follows:

• The initial state s0 is chosen from a Bernoulli product measure Pp,
with Pp(s0

0=+1)=p.
• At odd times n=1, 3,..., the spins in A are updated according to the

following rule: sx, x ¥ A, is flipped if and only if DxH(s) < 0.
• At even times n=2, 4,..., the spins in B are updated according to

the same rule as for those in A.

We denote by s. the limiting state of the cellular automaton sn.
s.=limn Q . sn exists with probability one (14) and, like sn for 1 [ n < .,
defines a dependent percolation model on H.

The following observations are useful in understanding the behavior of
the model and will help in the proof of our main result, Theorem 3, which
is presented in the next section of the paper.

• The values of the spins in A at time 0 are irrelevant since after the
first update those values are uniquely determined by the values of the spins
in B.

• Once the initial spin configuration in B is chosen, the dynamics is
completely deterministic.
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• A spin can no longer flip once it belongs to either a loop or a ‘‘bar-
bell’’ of constant sign, where a barbell consists of two disjoint loops con-
nected by a path.

There is an alternative but equivalent way of describing the discrete time
dynamics as a deterministic cellular automaton (with random initial state) on
the triangular lattice T (corresponding to the set B of sites). Given some site
x̄ ¥ T, group its six T-neighbors y x̄

i in three disjoint pairs {y x̄
1 , y x̄

2 }, {y x̄
3 , y x̄

4 },
{y x̄

5 , y x̄
6 }, so that y x̄

1 and y x̄
2 are T-neighbors, and so on for the other two

pairs. Translate this construction to all sites x ¥ T, thus producing three pairs
of sites {yx

1 , yx
2 }, {yx

3 , yx
4 }, {yx

5 , yx
6 } associated to each site x ¥ T. (Note that

this construction does not need to specify how T is embedded in R2.) Site x
is updated at times m=1, 2,... according to the following rule: the spin at
site x is changed from sx to −sx if and only if at least two of its pairs of
neighbors have all four sites with the same sign −sx.

The models on the hexagonal and on the triangular lattice are related
through a star-triangle transformation (see Fig. 1 and, for example, p. 335
of ref. 22). More precisely, the dynamics on the triangular lattice T is
equivalent to the zero-temperature Domany dynamics on the hexagonal
lattice H when restricted to the sublattice B for even times n=2m.

To see this, start with T and construct an hexagonal lattice HŒ by
means of a star-triangle transformation such that a site is added at the
center of each of the triangles (x, yx

1 , yx
2 ), (x, yx

3 , yx
4 ), and (x, yx

5 , yx
6 ). HŒ

may be partitioned into two triangular sublattices AŒ and BŒ with BŒ=T.
One can now see that the dynamics on T for m=1, 2,... and the zero-tem-
perature Domany dynamics on HŒ restricted to BŒ for even times n=2m
are the same.

An immediate consequence of this equivalence between the two
cellular automata is that the two families of percolation models that they
produce are also equivalent in an obvious way through a star-triangle
transformation. To be more precise, the percolation models defined on T
for times m=1, 2,... are the same as those defined on B by the zero-tem-
perature Domany model for even times n=2m.

We now present (without proof ) the results of ref. 1 on the zero-tem-
perature Domany model. Theorem 1 says that the convergence to the
limiting state is exponentially fast, while Theorem 2 identifies the critical
point of the percolation transition, pc=1/2.

Theorem 1. Let PA(n) denote the probability that a deterministic
site in A flips after time n and similarly for PB(n). Then, for any p, there is
a constant c ¥ (0, .) such that

PA(n), PB(n) [ e−cn. (3)
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Theorem 2. If p > 1/2 (resp., < 1/2), there is percolation of +1
(resp., −1) spins in sn for any n ¥ [1, .] for almost every s0.

If p=1/2:

1. For n ¥ [0, .], there is no percolation in sn of either +1 or −1
spins, for almost every s0.

2. The mean cluster size is infinite in sn for all n ¥ [1, .] (but finite
for n=0).

3. CRITICAL EXPONENTS

We will consider three percolation critical exponents, namely the
exponents b (related to the percolation probability), n (related to the corre-
lation length) and g (related to the connectivity function). The existence of
these exponents has been proved, and their predicted values confirmed
rigorously, in recent papers, (10, 21) for the case of independent site percola-
tion on the triangular lattice. Such exponents are believed to be universal
for independent percolation in the sense that their value should depend
only on the number of dimensions and not on the structure of the lattice or
on the nature of the percolation model (e.g., whether it is site or bond per-
colation); that type of universality has not yet been proved.

Consider an independent percolation model with distribution Pp on a
two-dimensional lattice L such that 0 < pc < 1. Let Cx be the open cluster
containing site x and |Cx | be its cardinality, then h(p)=hx(p)=
Pp(|Cx |=.) is the percolation probability. Arguments from theoretical
physics suggest that h(p) behaves roughly like (p − pc)b as p approaches pc

from above.
It is also believed that the connectivity function

yp(x, y)=Pp(x and y belong to the same cluster) (4)

behaves, for the Euclidean length ||x − y|| large, like ||x − y||−g if p=pc, and
like exp(−||x − y||/t(p)) if 0 < p < pc, for some t(p) satisfying t(p) Q . as
p ‘ pc. The correlation length t(p) is defined by

t(p)−1= lim
||x − y|| Q .

3−
1

||x − y||
log yp(x, y)4 . (5)

t(p) is expected to behave like (pc − p)−n as p ‘ pc.
It is not clear how strong one may expect such asymptotic relations to

be (for more details about critical exponents and scaling theory in percola-
tion, see ref. 22 and references therein). For this reason, the logarithmic
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relation is usually employed. That means that the previous conjectures are
usually stated in the following form:

lim
p a pc

log h(p)
log(p − pc)

=b, (6)

lim
||x − y|| Q .

log ypc
(x, y)

log ||x − y||
=−g, (7)

lim
p ‘ pc

log t(p)
log(pc − p)

=−n. (8)

In the rest of this section and in the next one, hx(p), yp(x, y), and t(p)
will indicate the percolation probability, connectivity function and correla-
tion length for independent site percolation on the triangular lattice T
(identified with B). We will denote by hx(p, n), yp, n(x, y), and t(p, n) the
corresponding quantities for the percolation models on the hexagonal
lattice H at time n=0, 1, 2,... . The main theorem of this paper is the
following.

Theorem 3. There exist constants 0 < c1, c2, c3, c4 < . such that,
-n ¥ [1, .], and x, y ¥ H and suitably chosen xŒ, yŒ ¥ B with ||x − xŒ||,
||y − yŒ|| [ 1,

c1 hxŒ(p) [ hx(p, n) [ c2hxŒ(p), for p ¥ (1/2, 1], (9)

pc3yp(xŒ, yŒ) [ yp, n(x, y) [ p−c4yp(xŒ, yŒ), for p ¥ (0, 1/2], (10)

t(p, n)=t(p), for p ¥ (0, 1/2]. (11)

The next corollary is an immediate consequence of Theorem 3 and its
main application; it says that the dependent percolation models defined
by sn, with n ¥ [1, .], are in the universality class of ordinary independent
percolation.

Corollary 3.1. The critical exponents b, g, and n exist for the
dependent percolation models on H defined by sn, with n ¥ [1, .], and
have the same numerical values as for independent site percolation on T.

Remark 3.1. As already mentioned, the existence of the exponents
b, n, and g for independent site percolation on T has been recently proved,
and their predicted values confirmed rigorously. (10, 21)
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4. PROOFS

Before we can prove the main results of this paper, we need some
notation. We will denote by Pp, n the distribution of sn with initial density p
of plus spins (i.e., with initial distribution Pp, 0=Pp).

For a site x ¥ H, we will denote by NH(x) the set of its three neighbors
in H. For a site x ¥ B, we will denote by NB(x) the set of its six neighbors
in B endowed with the graph structure of a triangular lattice (as explained
in Section 2—see also Fig. 1).

We will call an H-path a path on the hexagonal lattice H and a B-path
a path on the triangular lattice B. A path whose spins are all plus (resp.,
minus) will be called a plus (resp., minus) path. Similarly, we will call an
H-loop a (simple) loop on the hexagonal lattice H and B-loop a (simple)
loop on the triangular lattice B. A loop whose spins are all plus (resp.,
minus) will be called a plus (resp., minus) loop. Notice that constant-sign
H-loops, doubly-infinite H-paths and ‘‘barbells’’ (two loops connected by a
path) are stable for the dynamics, in the sense that, once formed, their spins
will never flip again.

For two subsets C and D of H, we indicate with {C }
H D} the event

that some site in C is connected to some site in D by a plus H-path, with
{C }

H
.} the event that some site in C belongs to an infinite plus H-path.

For two subsets C and D of B, endowed with the graph structure of a
triangular lattice, we indicate with {C }

B D} the event that some site in C
is connected to some site in D by a plus B-path, with {C }

B
.} the event

that some site in C belongs to an infinite plus B-path.

Proof of Theorem 3. Let us first assume that x and y belong to B;
we then take xŒ=x, yŒ=y in (9)–(10). The lower bound for hx(p, n) in
Eq. (9) comes from the following bound

hx(p, n)=Pp, n(x }
H

.) (12)

\ Pp, 0({x }
B

.} 5 {x belongs to a plus H-loop}) (13)

\ Pp, 0(x }
B

.) Pp, 0(x belongs to a plus H-loop) (14)

\ p6hx(p) (15)

>
1
26 hx(p), (16)

where we have used the fact that at time 1 (when the sites in A are updated
for the first time) the dynamics transforms any constant sign B-path into a
constant sign H-path, the FKG inequality and the fact that the events
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{0 }
B

.} and {0 belongs to a plus H-loop} are increasing (see, for
example, ref. 22), and the fact that the smallest H-loop contains 6 sites.

The lower bound for yp, n(x, y) in Eq. (10) is obtained in a similar way.
Mimicking the proof of the lower bound in Eq. (9), we have immediately

yp, n(x, y)=Pp, n(x }
H y) \ p12yp(x, y). (17)

For the upper bound of Eq. (9) we rely on the following observation.
If no site in NB(x) belongs to an infinite plus B-path at time 0, then, by the
self-matching property of the triangular lattice, site x must be surrounded
by a minus B-loop, which will produce a stable H-loop at time 1. There-
fore, site x will not belong to an infinite plus H-path at any later time.
Thus,

hx(p, n) [ Pp, 0(NB(x) }B .). (18)

Since the event {x }
B

.} can be written as {s0
x=+1} 5 {NB(x) }B .},

using the FKG inequality we have

Pp, 0(x }
B

.) \ pPp, 0(NB(x) }B .). (19)

From this and Eq. (18), we get

hx(p, n) [ p−1hx(p) [ 2hx(p), (20)

as required.
For the upper bound of Eq. (10), we first note that for bounded

||x − y||, the inequality is trivial by choosing c4 big enough so that the right-
hand side of (10) exceeds 1. Next, for ||x − y|| large enough, we notice that
unless {NB(x) }B NB(y)} at time 0, x and y must be separated by a
minus B-loop surrounding one of them or by a doubly-infinite minus
B-path, and therefore it cannot be the case that {x }

H y} at any later time
because at time 1 a stable minus H-loop or doubly-infinite H-path will be
formed. This yields, for ||x − y|| large enough,

yp, n(x, y) [ Pp, 0(NB(x) }B NB(y)). (21)

Since the event {x }
B y} can be written as {s0

x=s0
y=+1} 5

{NB(x) }B NB(y)}, using the FKG inequality we have

Pp, 0(x }
B y) \ p2 Pp, 0(NB(x) }B NB(y)). (22)

From this and Eq. (21), we get

yp, n(x, y) [ p−2yp(x, y), (23)

as required.
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If x and y belong to A, the proof is analogous, but one has to con-
sider slightly different events. In this case we take xŒ ¥ NH(x) and then we
have, for the lower bound in Eq. (9),

hx(p, n)=Pp, n(x }
H

.) (24)

\ Pp, 0({xŒ }
B

.} 5 {x belongs to a plus H-loop}) (25)

\ Pp, 0(xŒ }
B

.) Pp, 0(x belongs to a plus H-loop) (26)

\ p6hxŒ(p) (27)

>
1
26 hxŒ(p), (28)

where ||x − xŒ||=1 because xŒ is an H-neighbor of x.
Analogously, for the lower bound in Eq. (10), we get

yp, n(x, y)=Pp, n(x }
H y) \ p12yp(xŒ, yŒ), (29)

with xŒ ¥ NH(x) and yŒ ¥ NH(y).
For the upper bound of Eq. (9), we notice that, if no site in

1z ¥ NH(x) NB(z) belongs to an infinite plus B-path at time 0, then, by the
self-matching property of the triangular lattice, site x must be surrounded
by a minus B-loop that will produce a stable H-loop at time 1. Therefore,
site x will not belong to an infinite plus H-path at any later time. Thus,

hx(p, n) [ Pp, 0
1 0

z ¥ NH(x)
NB(z) }B .2 . (30)

Since for xŒ ¥ NH(x), {xŒ }
B

.} ‡ {s0
z =+1, -z ¥ NH(x)} 5 {1z ¥ NH(x)

NB(z) }B .}, using the FKG inequality we have

Pp, 0(xŒ }
B

.) \ p3 Pp, 0
1 0

z ¥ NH(x)
NB(z) }B .2 , (31)

which yields

hx(p, n) [ p−3hxŒ(p) [ 8hxŒ(p), (32)

with ||x − xŒ||=1.
The upper bound of Eq. (10), still trivial for bounded ||x − y||, follows

again from a similar observation for ||x − y|| large enough: unless
{1z ¥ NH(x) NB(z) }B 1zŒ ¥ NH(y) NB(zŒ)} at time 0, x and y must be separated
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by a minus B-loop surrounding one of them or by a doubly-infinite minus
B-path. At time 1, a stable minus H-loop or doubly-infinite H-path will be
formed, making the event {x }

H y} impossible at any later time. This
yields, for ||x − y|| large enough,

yp, n(x, y) [ Pp, 0
1 0

z ¥ NH(x)
NB(z) }B 0

zŒ ¥ NH(y)
NB(zŒ)2 . (33)

Since for xŒ ¥ NH(x) and yŒ ¥ NH(y), {xŒ }
B yŒ} ‡ {s0

z =+1, -z ¥ NH(x)}
5 {s0

zŒ=+1, -zŒ ¥ NH(y)} 5 {1z ¥ NH(x) NB(z) }B 1zŒ ¥ NH(y) NB(zŒ)}, using
the FKG inequality we have

Pp, 0(xŒ }
B yŒ) \ p6Pp, 0

1 0
z ¥ NH(x)

NB(z) }B 0
zŒ ¥ NH(y)

NB(zŒ)2 , (34)

which yields

yp, n(x, y) [ p−6yp(xŒ, yŒ), (35)

with xŒ ¥ NH(x) and yŒ ¥ NH(y).
The proof of Eq. (10) in the remaining case (namely, x ¥ A, y ¥ B or

vice versa) should now be clear.
Equation (11) is an immediate consequence of Eq. (10) and the defini-

tion of t(p); it is enough to observe that

lim
||x − y|| Q .

3−
1

||xŒ − yŒ||
[log yp(xŒ, yŒ)+c3 log p]4=t(p)−1 (36)

and

lim
||x − y|| Q .

3−
1

||xŒ − yŒ||
[log yp(xŒ, yŒ) − c4 log p]4=t(p)−1. L (37)

Proof of Corollary 3.1. It follows from Eqs. (9) and (10) that, for
p ¥ (1/2, 1] and ||x − y|| large enough,

−
log c1+log hxŒ(p)

log(p − 1/2)
[ −

log hx(p, n)
log(p − 1/2)

[ −
log c2+log hxŒ(p)

log(p − 1/2)
, (38)

log y1/2(xŒ, yŒ)+c3 log 1
2

log ||x − y||
[

log y1/2, n(x, y)
log ||x − y||

[
log y1/2(xŒ, yŒ) − c4 log 1

2

log ||x − y||
. (39)

Using these two equations, together with Eq. (11) and the definitions of
the critical exponents, and taking the appropriate limits gives the desired
results. L
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